
BabyDB: Baby’s First Multi-User Distributed RDBMS

Armaan Sood1

Abstract— BabyDB is a very basic multi-user relational
database management system (RDBMS) written in Java that
can handle simple queries, joins, aggregate functions, ACID
transactions, and a steal/no-force crash recovery with non-
quiescent checkpoints. It also can run in parallel, distributing
the query workload to multiple workers.

I. ARCHITECTURAL OVERVIEW

A. Storage Manager
At the lowest level of BabyDB is the storage manager.

This includes access methods, such as the heap files, the
buffer manager, the lock manager, and the log manager. The
access methods organize the data in OS files, or heap files, to
support fast access to the requested subsets of tuples. Each
heap file corresponds to a relation and breaks down the stored
data into multiple pages (heap pages), which are the units
of disk IO. Each heap page contains a page slot directory
at the beginning, indicating which slots of the page are full
and which are used, and then it contains the tuples after.
The buffer manager caches accessed data (pages) in memory
(the buffer pool) and supports writing to and reading from
disk. After getting full, the buffer manager randomly evicts
a page. BabyDB implements a steal/no-force policy, which
means the buffer pool can flush any page to disk (steal),
and it does not require flushing all pages associated with a
transaction to disk upon committing. These flexible policies
require the log manager to implement both undo and redo
logging. The log manager handles transactional recovery,
including redoing transactions that have committing and
undoing uncommitted and aborted transactions. It writes to
a physical log file to ensure transactions are not lost. To
guarantee ACID transactions, the lock manager implements
strict two-phase locking and grants shared and exclusive
locks to transactions that wish to read or write a page.
Whenever a transaction requests a specific page from the
buffer manager, it must specify the permission level (either
read or read and write). If it specifies read, it will be granted
a shared lock and access to the page if that page has no
exclusive locks on it. Otherwise, the transaction must wait
for the lock to be freed. If it specifies read and write, it will
be granted an exclusive lock if there are no other locks on the
page or the only lock on the page is a shared lock by the same
transaction. In either case, the lock manager implements a
deadlock detector using a wait-for-graph to prevent and abort
any deadlocks.

B. Query Processor
On the next level of BabyDB is the query processor. The

query processor first parses queries into an internal format,
1Armaan Sood www.armaansood.com

performing various checks using the catalog (this contains
references to access methods and pages). Then, it rewrites the
query using view rewriting and flattening. Next, it finds an
efficient physical and logical query plan to execute the query
using the query optimizer. Lastly, the query is executed. Each
operator implements a pull-based iterator interface, so the
query is executed by calling the open method on the top-
most operator of the query plan (usually a projection), which
subsequently calls the open method on its children, until it
reaches the access methods. After opening an operator, next
can be called to retrieve the requested subset of tuples. Lastly,
close is called to close any opened resources. Chaining
operators is simple because of the iterator interface.

II. COMPONENTS

The main components of BabyDB include the buffer
manager, the lock manager, the log manager, and various
operators.

A. Buffer Manager

The buffer manager is the main access point for operators
to retrieve data from data files. It acts as a much simpler
way for operators to access data — it would be complicated
to safely access OS file data directly from an operator, as
operators would need to know the exact offset of the data,
and would then need to manage transactions in a different
way. The buffer manager also communicates with the lock
manager and log manager to handle transaction processing
and recovery. Internally, it stores a buffer pool, which, in
BabyDB, is a concurrent hash map mapping page ids to their
pages.

If a transaction needs access to a page, it must first know
the page id, which can be found in the catalog given the
name of the page. The method that needs access to the page
will call the getPage() method, with the transaction id,
page id, and permission levels as arguments. The permissions
can be either “read only” or “read and write”, depending
on whether the transaction will be writing or not. After
the method is called, the buffer manager asks the lock
manager for a shared lock if the permission level is “read
only”, or an exclusive lock if the permission level is “read
and write”. If the lock manager denies the lock, the buffer
manager continues looping until it gains the lock. If there
is a deadlock, the lock manager will detect it and abort
the transaction. After obtaining the lock, the buffer manager
checks if the buffer pool already contains the page id. If
so, it returns the corresponding page. Otherwise, it checks
whether there is space in the buffer pool. If there is no space,
it will randomly evict a page. Then, it adds the page id



as a key in the buffer pool, and it maps this key to the
corresponding page. To get a reference to the corresponding
page, it asks the catalog for the database file (usually a
heap file) corresponding to the table id associated with the
page id, and then it asks the database file to read the page
corresponding to the page id. The database file then needs to
read the corresponding page bytes from disk and return this
page to the buffer manager, which then adds the page to the
buffer pool and returns the page to the original caller.

The buffer manager also handles the insertion and deletion
of tuples. If a transaction with transaction id tid wants to
insert tuple tup into a table with table id t, then it calls
insertTuple(tid, t, tup in the buffer manager.
The buffer manager gets the table’s corresponding database
file and calls its insertTuple(t, tup) method. That
method finds a page with space (if not, it constructs a new
page), and then the page writes the bytes of the tuple to its
in-memory data and marks the header slot as used. Deletion
of tuples works in a similar way.
Lastly, the buffer manager also handles completing
transactions and flushing pages to disk. If a transaction
commits, then the buffer manager requests all the
transaction’s associated pages from the lock manager
and it tells the log file to write their before and after images
to the log file on disk. If the transaction aborts, the buffer
manager restores all the dirtied pages associated with the
transaction by re-reading them from disk. In both cases,
all locks held by the transaction are released. Whenever a
page is evicted from the buffer manager, the buffer manager
flushes it to disk by writing a log entry, similar to above,
and using the heap file’s writePage() method.

Fig. 1. Buffer manager

B. Lock Manager

To provide ACID transactions, BabyDB implements strict
two-phase locking with shared and exclusive locks. The
lock manager is only accessed via the buffer manager, and
locks are only obtained in the buffer manager’s getPage()
method. The lock manager works by storing mappings from
page ids to the transaction ids which hold exclusive locks and
transaction ids which hold shared locks on the corresponding
page. A mapping of transaction ids to a set of page ids is
also stored to facilitate checking for locks, releasing locks

from a transaction, and returning pages associated with a
transaction. Lastly, a mapping of transaction ids to a set of
transaction ids is stored to implement the deadlock detector’s
wait-for-graph.

If a transaction requests a shared lock, the lock manager
checks to see if there are any exclusive locks held on the
page. If so, the lock manager adds to the wait-for-graph,
checks for a deadlock by finding a topological sort on
the wait-for-graph, and returns false to the buffer manager
(which then calls the method again). If a deadlock was
detected, the lock manager releases all locks associated with
the transaction id, removes the transaction from the wait-for-
graph, and aborts the transaction. Once the transaction can
obtain a shared lock, the lock manager adds it to the list of
transactions holding a shared lock on the page.

If a transaction requests an exclusive lock, the process is
similar to the above, but a lock is not granted unless there
are no other locks on the page or the only other lock is a
shared lock that can be upgraded (a shared lock held by the
same transaction).

Fig. 2. Example of a wait-for-graph with and without a deadlock

C. Log manager

BabyDB implements a steal/no-force transaction policy,
which means that pages of uncommitted transactions may be
written to disk (steal) and pages of committed transactions
do not need to be written to disk (no-force). These policies
increase the throughput of BabyDB, as pages will not be
constantly written to disk, and it can write them in batches.
To safely allow this to happen, our write-ahead log must
be able to both undo and redo transactions. The main
rule that must be followed for undo/redo-logging is that
if a transaction T modifies X , then the log must write
< T,X, u, v > to disk (log file) before X is written to disk
(heap file), where u is the old value and v is the new value.

In BabyDB, recovery, rollback, and writing to the log
is handled by the log file. At the very beginning of the
physical log file is a long representing the offset of the last
written non-quiescent checkpoint. Each log entry begins with
an integer, representing the type of log entry, and a long,
representing the transaction id. Then comes the log entry
data (such as the page for an update record), and the log
entry ends with a long integer representing the position in the
log file where this log entry began — this makes traversing
the log much simpler. There are six main log entry tags:
commit, update, abort, begin, checkpoint, and CLR. These
will be explained in more detail.

Say a transaction with transaction id, tid, aborts, and
the rollback method is called on that. After getting a lock



on the buffer pool and the log file (to prevent conflicting
writes), and after pre-appending to the log file, it creates
an empty hash set of transaction ids and adds the single
transaction id, tid, to this set. Then, a function that will
rollback every transaction in this set is called. This function
first finds the earliest log record in the set by comparing them
all from the map. This earliest record will be the stopping
point, since the undo-log scans backwards. After finding the
earliest record, the log manager seeks to eight bytes before
the end of the file. Since each log record has, at the end
of the record, a long indicating where in the file the record
begins, the log manager can read this (eight byte) long and
seek to that location. At the beginning of each log record is
a tag indicating the type of log record. If the tag says the
record is an update record, the log manager can then read
the transaction id, which is conveniently encoded as a long
directly after the tag, and the log manager can check if the
argument set of transaction ids contains this transaction id.
If so, the log manager calls a method to read page data.
First, the log manager reads in the page data to get the
“before” page image then reads in the page data again after
the first page offset to get the “after” page. After getting
these two pages, the log manager writes a compensating log
record to the log containing the transaction id, after image,
and before image (this will be explained in more detail).
Then, the log manager requests the heap file corresponding
to the after page from the catalog, and it writes the before
page to this heap file, thus correctly undoing changes. Then,
the buffer manager discards the after page from the buffer
pool since it is outdated information. After this, and also in
the case that the log manager didn’t undo/write to disk (if
the transaction or tag didn’t match earlier), the log manager
seeks to eight bytes before the original seek location (the
place where it found the tag). This places it in a position to
find the beginning of the next log record. It repeats the entire
above process until the current offset in the file is smaller
than the first log record (which is obtained from the map, as
described above).

After deciding to undo a transaction, but before writing it
to disk, the log manager writes, at the very end of the file,
a unique CLR tag, then the transaction id, followed by the
updated page and the page that had been undone. After this,
the log manager writes a long indicator to where this CLR
record had started. CLR records make undoing have less
work, since the log manager does not need to worry about
undoing stuff that has already been undone (like aborts, or
if the database crashes while undoing something).

If the database crashes, the recover method is called. This
method first redoes changes, then undoes changes that have
not committed. First, the log manager seeks to the beginning
of the file. It reads in the first long of the file, indicating
if and where the most recent checkpoint is. If there is no
checkpoint, it starts redoing from the beginning. If there is
a checkpoint, it goes to the checkpoint, reads in the list of
transactions and where they began, and starts redoing from
the earliest transaction. Then, it creates two sets, one for
the “loser” transactions and one for transactions that have

committed. While doing this, it adds any committed and CLR
transactions to the committed records set and adds any update
records to the losers set. Once it finds an update or CLR
record, it reads in the first page of the record, which is the
page it will write on, and reads in the second page, which is
the page it will read from to overwrite the first page with, and
then it redoes the changes by overwriting the page. After it
has gone through all the update and CLR records, it removes
from the losers set all the transactions from the committed
set, and it calls the rollback method on the losers set.

D. Operators

To retrieve and filter data from disk, BabyDB has various
operators, some corresponding to the logical operations of
relational algebra. These are responsible for the execution
of the query plan. Operators implement a pull-based iterator
interface, allowing query plans to be composed of a tree of
chained operators — each operator (except for access method
operators) store a given child operator upon construction.
The operator interface has five main methods: open(),
close(), hasNext(), next(), and rewind(). Most
operators implement these methods around calling the child’s
corresponding method. The topmost level of the plan starts
the query execution by calling open(). This loads any re-
sources needed to start retrieving tuples. Then, after checking
if there are any tuples left to retrieve with hasNext(),
next() is usually called, which retrieves the first tuple that
matches the SQL query. Lastly, rewind() can be called to
restart the iterator from the first tuple, and close() can be
called to close any open resources.

Fig. 3. An example of a query plan. Notice that the iterator methods are
called from top to bottom, and tuples are returned from bottom to top.

At the bridge between the query plan and the disk is
the heap file iterator access method. After calling the heap
file’s iterator(tid) method, a new heap file iterator
is constructed that will iterate over the entire file. Calling



open() gets the first heap page from the buffer manager
(with read only access), gets the tuple iterator for that page
(this iterates over all the tuples in the page) and stores these.
Calling next() in the heap file iterator returns the next
tuple by calling next on the heap page’s tuple iterator. If there
are no more tuples left on the page, the heap file iterator finds
the next empty page and returns the first tuple on that page.

The root operator of the query plan is the sequential scan
operator. This operator is an access method that reads each
tuple from a table in the order they are laid out on disk. The
operator is constructed with SeqScan(tid, tableId),
where tid is the transaction id associated with the query
and tableId is the id of the table that will be sequentially
scanned. The open() method for this operator asks the
catalog for the database file corresponding to the table id,
and then asks the database file for an access method iterator.
Then, the open() method of the database file iterator is
called. Calling next() simply returns the result of calling
next() on the database file iterator — this is the same case
for rewind(), hasNext(), and close().

Any operator can hold sequential scan as a child —
aggregate, delete, filter, insert, join, order by, project, and
rename are some of the operators BabyDB supports.

The join operator is a unique operator, in that, upon
construction, it takes in two children, corresponding to the
inner and outer relations to join. It also requires a join
predicate, which can be used to check whether two tuples can
be joined. Calling open() calls open on the two children.
Depending on whether the join predicate is checking for
equality (as opposed to inequality), the physical join plan
will be either a hash join (better for equality, by the nature
of hashing) or nested loop join (better for checking if a
tuple is in a range). For hash join, all of the inner child
relation is hashed on the join attribute into buckets (via
a hash map). After hashing all the tuples (when the inner
child’s next() method is depleted), each tuple of the outer
relation is retrieved, hashed on its join attribute, and checks
for the first match in the corresponding bucket. If there
is a match, a new tuple containing a concatenation of the
matching tuples is returned. Subsequent calls to next()
will continue searching this bucket until it is depleted. If
there is not a match, it keeps searching using the next tuple.
For the nested loop join algorithm, every tuple of the inner
relation is searched for each tuple of the outer relation to find
a satisfied join predicate. Similar to every other operator,
calling other methods (such as close()) just calls the
corresponding method in the child operators.

Fig. 4. Overview of BabyDB’s architecture

III. PARALLEL DATA PROCESSING

BabyDB also can run queries in parallel — either on a
single machine or as a distributed system with shared-nothing
architecture across multiple physical machines.

A. Overview

BabyDB horizontally partitions data to each node. The
addition of new operators, shuffle and collect, for producers
and consumers, allow for tuples to be sent between nodes.
Projections and simple selection operations can operate in
parallel, each on their own node, and return their results to
a single master node. For equi-join operations, each node
hashes its tuples on the join attribute and sends each hash
bucket to a certain node (each node uses shuffle producer to
send the tuples and shuffle consumer to collect the tuples).
From there, each node can perform a local join much quicker
due to the hashing. For aggregate operations, if there is no
grouping, each node can compute a partial aggregate and
send the results to a single node (the nodes send via collect
producer and the single node collects via collect consumer).
If there is grouping, similar to join, each node hashes on the
grouping attribute and sends tuples (via shuffle producer) to
other nodes corresponding to buckets.

B. Implementation and Design

The main components involve a basic worker (node)
process which works with other workers running in parallel,
the shuffle and collect operators that allow BabyDB to run
joins and aggregates in parallel, and an optimized version



Fig. 5. An example of how shuffle producer, shuffle consumer, collect
producer, and collect consumer can be used to distribute queries over
multiple machines.

of the aggregation operator for parallel queries. These will
allow BabyDB to execute queries with multiple processes,
exchange data between processes, and optimize operators for
a parallel architecture.

1) Worker: One of the most important pieces to running
BabyDB in parallel is the worker. Any query received by the
server (the coordinator) will be pre-processed and then sent
to all the workers.

At a high level, the server waits for the client to enter a
query, then the server generates a query plan and sends it to
the workers, who store the query plan and localize it. Next,
it notifies the server that it is ready to begin executing. The
server waits for all workers to send this message, then the
server notifies all workers to start executing. After receiving
the start message, the worker executes the query plan.

On a lower level, the worker class runs with two command
line arguments: the worker’s address (worker id) and the
server’s address. The worker stores its address and parses it to
find and store the hostname and port number. Then, it parses
the server’s address to find the hostname and the port number,
and it attempts to create and store a socket address by
resolving the hostname into an IP address (this should pass
if the address is valid). Then the worker creates an acceptor
— this binds to a TCP socket and waits for connections.
The worker will receive query plans and control messages
from the server and tuples from other workers during query
execution through the acceptor. After creating this worker,
BabyDB loads a copy of the schema for the worker, since
the schema is the same as the server’s schema. Then, the
worker gets prepared to receive network messages by setting
up the handler for the previously initialized acceptor. Lastly,
the message handler starts by binding the acceptor to a
network socket (which has the same hostname and port as
the worker), and then the worker starts. Periodically, BabyDB
will detect if the server is down — if so, the worker will stop
running. Now, the worker listens for messages to arrive over
the network.

After the worker’s working thread begins to run, it contin-
uously checks for a query plan. If it received a query plan, it
knows that the topmost operator will be a collect producer,
since, at the end of the query execution, it needs to send
all tuples to a single coordinator (the server). The working
thread casts the topmost operator into a collect producer,
opens it, and calls next(). At a high level, calling open()

on the collect producer opens its child operator, executes
the operator, and sends all the child operator’s tuples to
the paired collect consumer (the collect producer operator
stores the socket address of the paired collect consumer
upon construction). The working thread sends tuples by first
creating a network session between the consumer (using its
socket address) and the producer (using its handler). Then,
tuples from the child operator continuously fill up tuple bag
buffers and are written to the session after reaching a certain
capacity or time limit. Calling next() waits for collect
producer’s working thread to terminate and returns nothing
— it just lets the worker’s working thread know that there
is nothing left to send. Lastly, the worker’s working thread
calls close(), which closes the child operator in turn.

However, before executing the query plan, it must first
be localized with information local to the worker, rather
than the server. The localize method checks for sequential
scan operators in the query plan and resets the underlying
table id to one that is local to the worker, using the table’s
name and the worker’s catalog. For any producer operators,
the localize method needs to update the worker that the
producer runs on to this worker so that it can send data to the
consumer process. Lastly, each consumer operator needs an
input buffer, which, as described earlier, is what the producer
writes to in a network session. The buffer is found using a
map that maps the operator’s id to get the I/O buffer where
messages are sent to.

Some of the data sent over the network is serialized, such
as a tuple’s fields. However, a lot of the data should not
be serialized and should instead be recalculated after being
sent over the network. For example, the database file iterator
(the access method) is stored in sequential scan, but after
being sent over the network, it is no longer relevant since
the iterator was local to the coordinator node, not the worker
node. Therefore, sequential scan stores a transient iterator,
which means it is not sent over the network and it’s recreated
after being sent, using the local catalog.

2) Shuffle Operator: In order efficiently execute equi-
joins and aggregations, the workers need to be able to send
and collect tuples to other nodes based on a hash attribute.
While the collect producer operator allows for the sending
of tuples to a specific single node, shuffle producer sends to
multiple.

At a high level, if the user has relations X(a, b) and
Y (b, c) and wants to perform and equi-join on b, BabyDB
running in parallel will partition based on the value of b and
each worker will get certain values of b. Then, each worker
receives the bags of tuples with the same b values and each
shuffle consumer passes the tuples to the join operator.

On a lower level, the shuffle producer operator is con-
structed with a child operator, the operator id (for the server
and the workers to find out which operator is the owner of
an incoming message), an array of socket information for
the workers it will be sending data to, and the partition
function (used to simplify figuring out which worker to
send a tuple to). Upon calling open(), shuffle producer
opens its child, and invokes a working thread to start. The



working thread works similarly to collect producer, but with
multiple network sessions. When the working thread runs, it
creates an array of network sessions and an array of empty
buffers. The array of network sessions is created by using the
corresponding socket addresses from the array stored upon
construction as the remote address, and using the I/O handler
from the current worker as the handler for the other end of
the session. Then, while the child of the shuffle producer
operator has tuples left, the next tuple is stored (by calling
the child’s next() method), and the corresponding worker
is calculated (using the partition function). The tuple is added
to the worker’s buffer (in the array of buffers), and it checks
to size and time to see if the buffer should be written to
the session. After all the tuples have been emptied from the
child, it writes all the buffers to their corresponding sessions.

On the other end of the session is the shuffle consumer.
Upon construction, this operator stores the child operator
(which is a shuffle producer), the operator id, and an array
of socket information for each worker. Calling open()
essentially tells the shuffle producer (the child operator) to
open. Calling next() reads in a single tuple from the
incoming buffers that the shuffle producers sent.

3) Aggregate Optimization: Aggregate operators can also
be optimized by running in parallel. There are two cases:
either it is an aggregate operator with grouping, or it is
one without grouping. In the case that there is grouping,
it works similarly to join — the shuffle producer operator
is used with a partition function based on the group by
attribute, and the shuffle producer operator passes tuples to
the aggregate function. In the case that there is no grouping
(such as COUNT(*)), each worker first performs a partial
aggregation then sends the results to a single master worker
via the collect operators. Finally, the master work performs
the aggregation of the partial aggregates and sends the results
to a coordinator. Note that this works for all non-holistic
functions except for average — for this function, the partial
aggregation is performed by calculating both the sum and
count, and then the master worker calculates the average by
summing the sums and counts and then dividing.

BabyDB has an aggregate optimizer that replaces each
aggregate operator within an un-optimized parallel query
plan with two aggregate operators — a downstream and an
upstream aggregate operator. Downstream is the aggregation
done before sending the nodes between workers, and up-
stream is done after. For example, for a count operation, the
downstream aggregation would be count and the upstream
would be sum, since the sum of the counts is the overall
count.

For each aggregate function, the optimizer replaces it with
two. Sum is replaced with a down-stream and up-stream sum,
min is replaced with a down-stream and up-stream min, and
max is replaced with a down-stream and up-stream max. In
the case of average, however, the down-stream is a sum-count
function, and the up-stream is a sum-count average function.
Normally, an aggregate function outputs a tuple with one or
two fields, but the sum-count function outputs a tuple with
two or three fields. The first field is the grouping attribute,

if any, the second field is the sum of the aggregate values,
the third field is the count of the aggregate values. Then,
the sum-count average function sums up the sum and count
fields and returns a tuple with the grouping attribute and the
result of dividing the count field by the sum field.



IV. BENCHMARKS

To evaluate the performance of different queries on the
parallel database, the timing of various queries with varying
number of workers and trials will be presented. Specifically,
time in seconds will be recorded from testing one of three
queries on a BabyDB instance with either one, two, or four
workers, on two datasets — one (0.1) being 10 times larger
than the other (0.01) — and three trials each. Testing one
worker is roughly equivalent to running the non-parallel
version of BabyDB.

A. Simple Query
The first query is:

select * from Actor where id < 1000.
Here is the raw data:

Fig. 6. The raw data for query 1. The first three trials are for the 0.01
dataset, the second three are for the 0.1 dataset. All times are in seconds.

Notice how the seconds taken to execute a query gets
smaller as the trials go up — this is likely due to the data
being cached. Here is a graph comparing the speedup for the
smaller dataset and the larger dataset.

Fig. 7. The graph representing the speedup and scaleup for query 1.

As evident in the graph, BabyDB both speeds up and
scales up decently well with simple queries. The speedup
seems to asymptote around 4 workers, as seen by the small
deviation in time from 2 to 4 workers, compared to the
deviation from 1 to 2 workers. Clearly, for simple selection
queries, running on multiple nodes is much faster than
running on a single node, but adding more than 2 workers
seems to have no effect, at least for these dataset sizes.

B. Parallel Joins

The second query tests parallel joins:

select m.name,m.year,g.genre
from Movie m,Director d,Genre
g,Movie_Director md
where d.fname=‘Steven’ and
d.lname=‘Spielberg’
and d.id=md.did and md.mid=m.id
and g.mid=m.id.
Here is the raw data: As previously mentioned, the seconds

Fig. 8. The raw data for query 2. The first three trials are for the 0.01
dataset, the second three are for the 0.1 dataset.

it takes to execute each query goes down with the number
of trials, likely due to caching. Here is a graph comparing
the speedup for the smaller dataset and the larger dataset.

Fig. 9. The graph representing the speedup and scaleup for query 2.

For the smaller dataset, it seems that 1 worker is faster than
2 workers. This is unlike the previous query, because this
query uses a join, and therefore uses the shuffle producer and
consumer operators. This point could be an outlier (it likely is
not significant, as there is a 0.2 second difference between
1 and 2 workers). If the point is not an outlier, it could
potentially be due to the slightly larger overhead of having
2 workers as opposed to having 1 worker (multiple network
sessions will be opened, rather than a single, trivial one). For
the larger dataset, it seems that 4 workers takes longer than
2, and this is not the case for the smaller dataset. If this is
significant, then it could be due to the overhead of the shuffle



operator, as there are many more tuples to send between the
four workers in the larger dataset. Overall, BabyDB seems
to speedup slightly worse than with simple queries, but the
scaleup is still somewhat significant (although both datasets
ran quickly).

C. Parallel Aggregation

The last query tests parallel aggregation:

select m.name,m.year,g.genre
select m.name,count(a.id)
from Movie m,Director d,Movie_Director
md, Actor a,Casts c
where d.fname=‘Steven’ and
d.lname=‘Spielberg’
and d.id=md.did and md.mid=m.id
and c.mid=m.id
and c.pid=a.id
group by m.name
Here is the raw data: As previously mentioned, the seconds

Fig. 10. The raw data for query 3. The first three trials are for the 0.01
dataset, the second three are for the 0.1 dataset.

it takes to execute each query goes down with the number
of trials, likely due to caching. Here is a graph comparing
the speedup for the smaller dataset and the larger dataset.

Fig. 11. The graph representing the speedup and scaleup for query 3.

The larger dataset ran much more slowly than the small
dataset, so the scaleup for aggregate queries is likely large.
It seems like there is not really a benefit from moving to

a single node BabyDB to a parallel one for the smaller
dataset — the queries took longer to execute, likely due to
the overhead of the parallel operators. For the large dataset,
there was a significant speedup moving from one worker to
two workers, but not so much when moving from two to
four — again, this is likely due to the additional overhead
of four workers on such a large dataset.



V. DISCUSSION

BabyDB is nowhere near a complete relational database
management system — let alone a distributed database
management system. There are many essential features
that BabyDB lacks, such as replication and distributed
transactions. However, as the name suggests, BabyDB is not
meant to be anything but a “baby” database management
system — it does contains many essential features, such as
a basic storage manager, query executor, write-ahead log,
and lock manager, but it cannot offer anything that another
database management system lacks. Despite this, it was
a great learning experience and it took me from knowing
nothing about database systems to wanting to work on them
in the industry.

A. Performance

Performance is a broad category — it could mean
anything from the basic parallel time-based performance
tested in my benchmarks, to scalability for massive sets of
data, network performance, or even energy consumption.
However, this cannot be easily tested in BabyDB, so I will
discuss time-based performance. It performs much better
than I would have expected, almost as fast as SQLite. I’m
especially surprised at how quickly it performed multi-way
parallel joins.

B. Moving Forward

If I had more time, I would have added index pages
and index scans, rather than only having heap pages and
sequential scans; a more advanced statistical-based query
optimizer; distributed transactions; a process manager that
maintains concurrent client requests across a network and
ensures clients have permissions; and shared utilities, such
as configuring the amount of resources BabyDB can use,
permissions, and replica creation, so that the database system
can handle multi-tenant requests. In a separate course on
distributed database systems, I implemented a linearizable,
Paxos-replicated, sharded key-value store with multi-key
updates and dynamic load balancing — some of these
components could be added to BabyDB, but BabyDB is a
relational database, not a key-value store, so there would be
a lot of modifications necessary.

REFERENCES

[1] Garcia-Molina, H., Ullman, J. D., & Widom, J. (2009). Database
systems: The complete book.

[2] Ramakrishnan, Raghu. (2003). Database management systems / Raghu
Ramakrishnan . Boston: McGraw-Hill.


